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In a quantizing magnetic field, the two-dimensional electron gas has a rich phase diagram with broken
translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to
obtain the dynamical matrix of these crystals from a calculation of the density response function performed in
the generalized random-phase approximation �GRPA�. We discuss the validity of our method by comparing the
dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic
coefficients obtained from a calculation of the deformation energy of the crystal.
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I. INTRODUCTION

Theoretical calculations show that, in the presence of a
perpendicular magnetic field, a two-dimensional electron gas
�2DEG� should crystallize below a filling factor ��1 /6.5.1

Several experimental groups have reported transport mea-
surements indicative of this electron crystallization when the
filling factor of the lowest Landau level is decreased below
�=1 /5. These measurements include the observation of a
strong increase in the diagonal resistivity �xx, nonlinear I-V
characteristics, and broadband noise. All these observations
have been interpreted as the pinning and sliding of a Wigner
crystal �WC�.2 Moreover, microwave absorption
experiments3 have also detected a resonance in the real part
of the longitudinal conductivity, �xx���, that has been attrib-
uted to the pinning mode of a disordered Wigner crystal. The
vanishing of the pinning mode resonance at some critical
temperature Tm��� has been used to derive the phase diagram
of the crystal4 in the quantum regime where the kinetic en-
ergy is frozen by the quantizing magnetic field. Similar mi-
crowave absorption experiments also showed a pinning reso-
nance at higher filling factors close to �=1,2 ,3, where the
formation of a Wigner solid is expected in very clean
samples.5–7 Finally, in Landau levels of index N�1, a study
of the evolution of the pinning mode with filling factor re-
veals several transitions of the 2DEG ground state from a
Wigner crystal at low � to bubble crystals with increasing
number of electrons per lattice site as � is increased and into
a modulated stripe state �or anisotropic Wigner crystal� near
half-filling.8

In earlier works,9,12 some of us have studied several crys-
talline states of the 2DEG using a combination of Hartree–
Fock approximation �HFA� and generalized random-phase
approximation �GRPA�. In these works, the energy and order
parameters of the crystal were calculated in a self-consistent
HFA, while the collective excitations were derived from the
poles of density response functions computed in the GRPA.
This microscopic approach �HFA+GRPA� works well at
zero temperature but is difficult to generalize to consider
finite-temperature effects or to include quantum fluctuations
beyond the GRPA. Finite-temperature or quantum fluctuation
effects �not already included in the GRPA� are most easily

computed by writing down an elastic action for the system.
For a crystalline solid, this requires the knowledge of the
dynamical matrix �DM� or, equivalently, of the elastic coef-
ficients of the solid.

A direct way to obtain these elastic coefficients is to com-
pute the energy required for various static deformations of
the crystal. Using elasticity theory, each deformation energy
�Ei can be written in the form �Ei=

1
2Ciu0

2, where u0 is a
parameter characterizing the amplitude of the deformation
and Ci is generally a combination of elastic constants. In the
limit u0→0, one can obtain the elastic coefficients by com-
puting the deformation energy of one or more static defor-
mations and using the known symmetry relations between
the elastic constants. Alternatively, one can obtain a DM
from the GRPA density response function much more di-
rectly without the need to compute the elastic coefficients.10

In this paper, we compare the DM obtained from these
two methods �deformation energy and GRPA� in order to
find the range of validity as well as the limitations of the
GRPA approach. We first consider the simple case of an iso-
tropic �triangular� Wigner crystal before tackling the more
complex anisotropic Wigner crystal12 or stripe phase that oc-
curs near half-filling in the higher Landau levels. We show
that although the GRPA method gives a good description of
the qualitative behavior of the DM as a function of filling
factor, its quantitative predictions must be used with caution.
As we will show below, an averaging procedure must be
applied to the method in order to obtain a DM in the GRPA
that compares favorably with the one obtained by computing
the deformation energy.

Our paper is organized as follows. In Sec. II, we define
the elastic constants needed to build an elastic model for the
Wigner and stripe crystals. We then explain in Sec. III how
these elastic constants can be derived by computing the de-
formation energy of the crystals in the HFA. In Sec. IV, we
summarize the GRPA method of obtaining the dynamical
matrix. Our numerical results for the WC are discussed in
Sec. V and those for the stripe crystal in Sec. VI. Section VI
contains our conclusions.

II. ELASTIC CONSTANTS AND DYNAMICAL MATRIX

We describe the elastic deformation of a crystal state by a
displacement field u�R� defined on each lattice site R. The
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Fourier transform of this operator is given by

u�k� =
1

�Ns
�
R

e−ik·Ru�R� , �1�

where Ns is the number of lattice sites. In two dimensions,
the general expression for the deformation energy of a crys-
tal requires the use of six elastic coefficients cij and is given
in the continuum limit by the following expression:11

�E =
1

2
� dr�c11ex,x

2 + 4c66ex,y
2 + 4c62ex,yeyy�

+
1

2
� dr�2c12ex,xey,y + 4c16ex,xex,y + c22ey,y

2 � , �2�

where

e�,	�r� =
1

2
	 �u��r�

�r	

+
�u	�r�

�r�

 �3�

is the symmetric strain tensor.
The Wigner and bubble crystals have a triangular lattice

structure for which the following equation holds:

c11 = c22 = 2c66 + c12. �4�

For such a triangular structure, the elastic energy in the long-
wavelength limit can be written in a form that contains only
two elastic coefficients, namely,

�E =
1

2
� dr�c12�ex,x

2 + ey,y
2 + 2ex,xey,y� + 2c66�ex,x

2 + ey,y
2

+ 2ex,y
2 �� . �5�

The anisotropic stripe state can be seen either as a cen-
tered rectangular lattice with two electrons per unit cell or as
a rhombic lattice with one electron per unit cell with reflec-
tion symmetry in both the x and y axes. The deformation
energy is given by

�E =
1

2
� dr�c11ex,x

2 + 4c66ex,y
2 � +

1

2
� dr�2c12ex,xey,y

+ c22ey,y
2 � . �6�

In this paper, we assume that the stripes are aligned along the
y axis.

The above formulation of elasticity theory assumes short-
range forces only. For the electronic crystals that we con-
sider, these forces are of Coulombic origin, i.e., the Hamil-
tonian of the crystal contains only the Coulomb interaction
between electrons and the kinetic energy which is frozen by
the quantizing magnetic field. Both the direct �Hartree� and
exchange �Fock� terms are considered by the Hartree–Fock
approximation as we will explain in the next section. To take
into account the long-range part of the Coulomb interaction
present in a crystal of electrons in the elasticity theory, it is
necessary to add to �E the deformation energy �EC given by

�EC =
e2

2
� dr� dr�


n�r�
n�r��
��r − r��

=
�e2

S
�
q


n�q�
n�− q�
�q

,

�7�

where S is the area of the crystal, 
n�q�=�dre−iq·r
n�r� is
the Fourier transform of the change in the electronic density,
and � is the dielectric constant of the host semiconductor. We
consider the positive background of ionized donors as homo-
geneous and inert, so that no linear term in 
n�r� is intro-
duced by the Coulomb interaction.

To define a dynamical matrix, we assume that the crystal
can be viewed as a lattice of electrons with static form factor
h�r� on each crystal site �with the normalization �drh�r�
=1�. The time-dependent density can then be written as

n�r,t� = �
R

h�r − R − u�R,t�� , �8�

and, to first order in the displacement field, we have the
following for a density fluctuation:


n�k + G,t� = − ih�k + G��Ns�k + G� · u�k,t� , �9�

where G is a reciprocal lattice vector and k a vector in the
first Brillouin zone of the crystal. It follows that we can write
the Coulomb energy as

�EC = �n0e2�
q

�h�q�q · u�q��2

�q
, �10�

where n0=Ns /S is the average electronic density.
We pause at this point to remark that the form factor

h�q��e−q2�2/2 �with �=�c /eB the magnetic length, B being
the applied magnetic field� in Eq. �10� renders the summa-
tion over the wave vectors rapidly convergent. Our Hartree–
Fock calculation of the ground-state energy of the electronic
crystals, as well as our GRPA calculation of the dynamical
matrix, also involves summations over reciprocal lattice vec-
tors G of some functions weighted by h�G�. If the magnetic
field is not too strong, we can perform these summations
directly. There is no need to use Ewald’s summation tech-
nique, as is the case if one works with a crystal of point
electrons. Of course, as the filling factor �→0, the magnetic
length �→0, so the electrons behave more and more like
point particles and the convergence is lost. In all cases that
we consider, the summations involved are rapidly convergent
because we restrict ourselves to filling factors �=2�n0�2

�0.1 where � /a0 is sufficiently large for e−G2�2/2 to be small
�a0 being the lattice constant�. The cutoff in G is chosen, so
that the summations are evaluated with the required degree
of accuracy.

The total deformation energy, which we now write as
�ET, now includes the long-range Coulomb interaction and
can be written in the form

�ET =
1

2�
k

u��k�D�,	�k�u	�− k� , �11�

where we have introduced the dynamical matrix
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D�,	�k� =
�2�ET

�u��k��u	�− k�
. �12�

For the triangular lattice, a comparison of Eqs. �11� and �5�
gives the dynamical matrix �to order k2� as

Dx,x�k� = n0
−1�c̃12�k� + 2c66�kx

2 + c66ky
2� , �13a�

Dx,y�k� = n0
−1�c̃12�k� + c66�kxky , �13b�

Dy,y�k� = n0
−1�c̃12�k� + 2c66�ky

2 + c66kx
2� . �13c�

The long-range Coulomb interaction renders the elastic co-
efficient c12 �but not the shear modulus c66� nonlocal, so that
c12 contains a diverging term �1 /k. We shall write

c̃12�k� =
2�n0

2e2

�k
+ c12, �14�

where c12 is the weakly dispersive part of the elastic coeffi-
cient and where the plasmonic �first� term on the right hand
side is due to the long-range nature of the Coulomb interac-
tion.

For the stripe state, Eq. �4� is no longer valid. In addition,
all three elastic coefficients c11,c12,c22 become nonlocal. We
have the following in this case:

Dx,x�k� = n0
−1�c̃11�k�kx

2 + c66ky
2� + n0

−1Kky
4, �15a�

Dx,y�k� = n0
−1�c̃12�k� + c66�kxky , �15b�

Dy,y�k� = n0
−1�c̃22�k�ky

2 + c66kx
2� , �15c�

where c̃ij =
2�n0

2e2

�k +cij, with i , j=1,2, and where we added a
term Kky

4 to Dx,x�k� in order to take into account the bending
rigidity of the stripes which, due to the small value of the
shear modulus c66 in these systems, is quantitatively impor-
tant over a sizable region of the Brillouin zone.12 Using the
fact that n0=� /2��2, we finally obtain

c̃ij = 	 e2

��

 �

k�
n0 + cij . �16�

We now want to discuss how one can evaluate the nondis-
persive part cij of the elastic coefficients. This will be the
subject of the following section.

III. CALCULATION OF THE ELASTIC COEFFICIENTS IN
THE HARTREE–FOCK APPROXIMATION

In the Hartree–Fock approximation, a crystalline phase is
described by the Fourier components �n�G�� of the average
electronic density, where G is a reciprocal lattice vector. In
the strong magnetic field limit where the Hilbert space is
restricted to one Landau level, it is more convenient to work
with the “guiding-center density” ���G�� which is related to
�n�G�� by

�n�G�� = N�FN�G����G�� , �17�

where N� is the Landau-level degeneracy and

FN�G� = e−G2�2/4LN
0	G2�2

2

 �18�

is the form factor of an electron in Landau level N �LN
0 �x�

being a generalized Laguerre polynomial�. The magnetic
field B=Bẑ is perpendicular to the 2DEG.

The Hartree–Fock energy per electron in the partially
filled Landau level is given by9,12

E

Ne
=

1

2�
�
G

�H�G��1 − 
G,0� − X�G������G���2, �19�

where the 
G,0 term in this equation accounts for the neutral-
izing background of the ionized donors. The parameter �
=Ne /N� is the filling factor of the partially filled level, and
we take all filled levels below N to be inert. The Hartree and
Fock interactions in Landau level N are defined by

H�q� = 	 e2

��

 1

q�
e−q2�2/2�LN

0	q2�2

2

�2

, �20a�

X�q� = 	 e2

��

�2�

0

�

dxe−x2
�LN

0 �x2��2J0��2xq�� , �20b�

where J0�x� is the Bessel function of the first kind.
To compute the ���G���s, we first write this quantity in

second quantization and in the Landau gauge A= �0,Bx ,0�
as

���G�� =
1

N�
�
X

e−iGxX+iGxGy�2/2�cN,X
† cN,X−Gy�2� . �21�

The average values ���G�� are obtained by computing the
single-particle Green’s function �here and in what follows, T�

denotes the time ordering operator�:

G�X,X�,�� = − �T�cN,X���cN,X�
† �0�� , �22�

whose Fourier transform we define as

G�G,�� =
1

N�
�
X,X�

e−�i/2�Gx�X+X��
X,X�−Gy�2G�X,X�,�� ,

�23�

so that

���G�� = G�G,� = 0−� . �24�

We use an iterative scheme to solve numerically9 the
Hartree–Fock equation of motion for G�G ,��. For the unde-
formed lattice, we use the basis vectors

R1 = a0� sin���x̂ + a0� cos���ŷ , �25a�

R2 = a0ŷ , �25b�

where � is the aspect ratio and � is the angle between the
two basis vectors. For the triangular lattice, �=1 and �
=� /3. If we apply an elastic deformation u�r� to the lattice,
the new lattice vectors are given by R�=nR1+mR2+u�r�
�where n ,m are integers�. We can write this expression as
R�=nR1�+mR2� if we define the new basis vectors as
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R1� = a0��� sin����x̂ + a0��� cos����ŷ , �26a�

R2� = a0�ŷ . �26b�

The parameters a0�, ��, and �� are functions of the original
lattice and of the type of deformation considered. The recip-
rocal lattice vectors of the deformed lattice are easily com-
puted once these parameters are known. Then, the cohesive
energy E�u0� of the deformed lattice can be calculated using
the deformed reciprocal lattice vectors and Eq. �9�. Under
these circumstances, we find that the deformation energy per
electron is given by

f =
E�u0�

Ne
−

E�u0 = 0�
Ne

. �27�

To find the elastic coefficients for the Wigner and stripe crys-
tals, we need to consider the following deformations �note
that the magnetic field and the number of electrons are kept
fixed12,13�:

�i� A shear deformation with ux�r�=u0y and uy�r�=0. The
strain tensors in this case are given by ex,x�r�=ey,y�r�=0 and
ex,y�r�=u0 /2. The area of the system, S, is not changed by
this deformation and the elastic energy is given by Fshear

= 1
2Sc66u0

2. It then follows that the shear modulus c66 is given
by

c66 = lim
u0→0

n0
d2fshear

du0
2 , �28�

where f =F /Ne is the deformation energy per electron. The
parameters of the distorted lattice for this shear deformation
are given by

a0� = a0, �29a�

�� = ��1 + u0 sin���cos��� + u0
2 sin2��� , �29b�

sin���� =
sin���

�1 + u0 sin���cos��� + u0
2 sin2���

. �29c�

�ii� A one-dimensional dilatation along x̂, with ux�r�
=u0x and uy�r�=0. Here, the strain tensors ex,x�r�=u0,
ey,y�r�=0, and ex,y�r�=0, and the new area of the system is
S�= �1+u0�S and Fdx= 1

2Sc11u0
2. It then follows that the com-

pression constant c11 is given by

c11 = lim
u0→0

n0
d2fdx

du0
2 , �30�

while the parameters of the deformed lattice are given by

a0� = a0, �31a�

�� = ��1 + �2u0 + u0
2�sin2��� , �31b�

sin���� =
�1 + u0�sin���

�1 + �2u0 + u0
2�sin2���

. �31c�

The surface of the deformed lattice is S�=a0�
2�� sin����

=S�1+u0�, so that the filling factor is now given by ��
=� / �1+u0�.

�iii� A one-dimensional dilatation along ŷ with ux�r�=0
and uy�r�=u0y: Now, the strain tensors ex,x�r�=0, ey,y�r�
=u0, and ex,y�r�=0. The new area of the system is S�= �1
+u0�S and Fdy = 1

2Sc22u0
2. The compression constant c22 is

therefore given by

c22 = lim
u0→0

n0
d2fdy

du0
2 . �32�

On the other hand, the parameters of the deformed lattice are
given by

a0� = �1 + u0�a0, �33a�

�� =
�

�1 + u0�
�1 + �2u0 + u0

2�cos2��� , �33b�

cos���� =
�1 + u0�cos���

�1 + �2u0 + u0
2�cos2���

. �33c�

The surface of the deformed lattice is S�=a0�
2�� sin����

=S�1+u0�, so that the filling factor ��=� / �1+u0�.
�iv� A two-dimensional dilatation with ux�r�=u0x and

uy�r�=u0y: Now, the strain tensors ex,x�r�=ey,y�r�=u0 and
ex,y�r�=0. The new area of the system is S�= �1+u0�2S and
Fdxy = 1

2S�c11+2c12+c22�u0
2. It follows that the combination

c11+2c12+c22 is given by

c11 + 2c12 + c22 = lim
u0→0

n0
d2fdxy

du0
2 . �34�

For this case, there is no need to actually compute the energy
of the deformed lattice since we can extract c11+2c12+c22
from the Hartree–Fock energy E /Ne given in Eq. �19� in the
following manner. The area per electron, s, in the deformed
lattice is s= �1+u0�2s0, so that �s0 here is the area per electron
of the undeformed lattice�

c11 + 2c12 + c22 = 4s0	d2fdxy

ds2 

s=s0

. �35�

The change in s causes a change in the filling factor, which is
now given by

�� =
�

�1 + u0�2 =
2��2

s�
. �36�

Writing the HF energy as E /Ne= � e2

��
�A���, we have the rela-

tion
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c11 + 2c12 + c22 =
2

�
	 e2

��3
�2��
d2A���

d�2 + 2
dA���

d�
� .

�37�

Note that the long-wavelength Coulomb term
2�n0

2e2

�k must be
added to c11, c12, and c22 that we compute in order to get c̃11,
c̃12, and c̃22.

Figure 1 shows the expected quadratic behavior of the
deformation energy as a function of u0 �Eq. �27�� for a shear
deformation in the small u0 limit. In the one- and two-
dimensional compressions �i�–�iv�, however, Eq. �27� leads
to the addition of a nonphysical linear term in the depen-
dence of the energies fdx, fdy, fdxy on u0, as can be seen in
Fig. 2. In the absence of deformation, the average electronic
density is equal to that of the positive background. This neu-
trality removes the divergence of H�G� at G=0 in the
Hartree–Fock energy of Eq. �19�. When the electron lattice is
dilated �but not the positive background�, the electronic den-
sity no longer matches the density of the positive background
and there is a restoring force that arises from this density
imbalance. It is easy to show, assuming a density of the form
of Eq. �8�, that no linear term in u0 arises when the interac-
tion with the positive background is properly taken into ac-
count, and that the interaction with the background does not
give rise to higher order terms in u0. Our Hartree–Fock pro-
cedure requires that the electronic and background densities
be the same even for u0�0, which has the immediate con-
sequence that we cannot directly compute the deformation
energy using Eq. �27�. For all but the shear deformation, it is
thus necessary for us to substract the linear term in Eq. �27�
and to add by hand the long-wavelength Coulomb contribu-
tion of Eq. �10� in order to get the correct elastic constants.
Figure 2 shows that a quadratic behavior for the deformation
energy is recovered when the linear term is substracted. Note
that the deformation energy in Fig. 2 does not contain the
long-wavelength Coulomb contribution of Eq. �10�, so that it
can be either positive or negative. Our definitions in Eqs.
�30�, �32�, and �34� of the elastic coefficients are not affected
by this procedure of removing the linear term in u0 since

they involve the second derivative of the energy with respect
to u0.

It is instructive at this point to note that, for a triangular
Wigner crystal of classical electrons, the calculation of Bon-
sall and Maradudin14 gives the following expression for the
quantity A���

A��� = − 0.782 133�� , �38�

and for the elastic coefficients:

c12 = − 0.108 92�3/2	 e2

��3
 , �39a�

c66 = 0.015 56�3/2	 e2

��3
 . �39b�

If we use Eq. �37� �with relation �4�� and take c66 as given by
Eq. �39b�, we find c12=−7c66, which is consistent with Eq.
�39a�.

IV. DYNAMICAL MATRIX FROM THE GENERALIZED
RANDOM-PHASE APPROXIMATION

We now turn our attention to the calculation of the DM of
electron crystals in the GRPA method. In the strong magnetic
field limit where the Hilbert space is restricted to one Landau
level only, the Hamiltonian of the system is given by

H = �
k

�
�,	

u��− k�D�,	�k�u	�k� , �40�

where � ,	=x ,y and k is a vector restricted to the first Bril-
louin zone of the crystal. If we define the Matsubara dis-
placement Green’s function by

G�,	�k,�� = − �T�u��k,��u	�− k,0�� , �41�

we find, using 
�
�� �¯�= �H , �¯�� and the commutation rela-

tion �ux�k� ,uy�k���= i�2
k,−k�, that this Green’s function is
related to the dynamical matrix by

G�,	�k,i�n� =
− �4

��n
2 + �mp

2 �k��� Dy,y�k� −
�n

�2 − Dx,y�k�

�n

�2 − Dy,x�k� Dx,x�k� �
�	

, �42�

where �n=2�n /T is a bosonic Matsubara frequency and

�mp�k� =
�2


�det�D�k�� �43�

is the magnetophonon dispersion relation.
We now define the following density Green’s function:

�G,G�
��,�� �k,�� = − N��T��̃�k + G,���̃�− k − G�,0�� , �44�

where �̃=�− ���. In the GRPA, this Green’s function is found
by solving the following set of equations:9

DYNAMICAL MATRIX OF TWO-DIMENSIONAL ELECTRON… PHYSICAL REVIEW B 77, 115303 �2008�

115303-5



�
G�

�i�n
G,G� − MG,G��k���G�,G�
��,�� �k,i�n� = BG,G��q� ,

�45�

with the following definitions:

MG,G��k� = − 2i	 e2

��

���G

− G���sin�ẑ ·
�k + G� � �k + G���2

2
��H�G

− G�� − X�G − G�� − H�k + G�� + X�k + G���
�46�

and

BG,G��k� = 2i���G − G���sin�ẑ ·
�q + G� � �q + G���2

2
� .

�47�

Diagonalizing the matrix M�k� and making the analytic con-
tinuation i�n→�+ i
, we can write �G,G�

��,�� �k ,�� in the form

�G,G�
��,�� �k,�� = �

i

WG,G�
�i� �k�

� + i
 − �̃i�k�
. �48�

At small k, the pole �̃i�k� with the biggest weight WG,G
�i� �k�

gives the GRPA magnetophonon mode. We define this pole
as �̃GRPA�k� and the corresponding weight as WG,G

�GRPA��k�.
We now relate the displacement Green’s function to the

density Green’s function using Eq. �9�. This last equation,
coupled to Eq. �44�, gives the following relation between the
density and displacement response functions �here, F�k� is
the function defined in Eq. �18�, where, for simplicity, we
now drop the Landau-level index N�:

�G,G�
��,�� �k,�� = �

h�k + G�h�k + G��
F�k + G�F�k + G����,	

�k� + G��G�,	�k,��

��k	 + G	�� . �49�

In deriving Eq. �49�, we have assumed that q ·u�R��1, so
that a density fluctuation can be linearly related to the dis-
placement u�q� by Eq. �9�. This is equivalent to assuming
that the crystal can be described in the harmonic approxima-
tion, so that only a knowledge of the dynamical matrix is
necessary. To get Eq. �49�, we have also assumed that h�r�
=h�−r�, so that h�q� is real. We can now use Eq. �42� and the
symmetry relation D�,	�k�=D	,��k� to relate the density re-
sponse function to the dynamical matrix:

�G,G�
��,�� �k,�� =

��4



��1�k� +
i�

�2 �2�k��
��� + i
�2 − �mp

2 �k��
h�k + G�h�k + G��
F�k + G�F�k + G��

,

�50�

where we defined

�1�k� = − ẑ · ��k + G� � D�k� � �k + G��� · ẑ , �51a�

�2�k� = ẑ · ��k + G� � �k + G��� . �51b�

For � close to the magnetophonon resonance, we can write

�G,G�
��,�� �k,�� �

��4



Z�k�
� + i
 − �mp�k�

h�k + G�h�k + G��
F�k + G�F�k + G��

,

�52�

where we defined the quantity

Z�k� =
�1�k�

2�mp�k�
+ i

�2�k�
2�2 . �53�

Then, equating Eq. �52� with Eq. �48� for � close to
�GRPA�k�, we obtain

u0
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2 /κ
l)
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2.0E-06

2.5E-06

FIG. 1. Deformation energy as a function of u0 for a shear
deformation, u�r�=u0yx̂, in a triangular Wigner crystal in Landau
level N=0 with filling factor �=0.15. The square symbols are the
HFA result, while the solid line is a polynomial fit of order 2 �the
linear term is negligible�.
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FIG. 2. Deformation energy as a function of u0 for a one-
dimensional dilatation of a triangular Wigner crystal in Landau
level N=0 with filling factor �=0.15. The square symbols are the
HFA result �left axis�, while the solid line is a polynomial fit. The
dashed line �right axis� is the deformation energy with the linear
term removed.

CÔTÉ et al. PHYSICAL REVIEW B 77, 115303 �2008�

115303-6



��4



Z�k�
� + i
 − �mp�k�

h�k + G�h�k + G��
F�k + G�F�k + G��

=
WG,G�

�GRPA��k�

� + i
 − �̃GRPA�k�
. �54�

Because �mp�k� must be equal to �̃GRPA�k�, we can finally
write

��4


Z�k�

h�k + G�h�k + G��
F�k + G�F�k + G��

= WG,G�
�GRPA��k� , �55�

or, taking the real and imaginary parts of this equation �we
remind the reader that both functions h�k� and F�k� are real�:

Re�WG,G�
�GRPA��k�� =

�

2
� h�k + G�h�k + G��

F�k + G�F�k + G��
� �1�k��4

�mp�k�
,

�56a�

Im�WG,G�
�GRPA��k�� =

�

2
� h�k + G�h�k + G��

F�k + G�F�k + G��
��2�k��2.

�56b�

We can get rid of the unknown form factors h�k+G� if we
work with the ratio of the imaginary and real parts of the
weights. We thus define

�G,G��k� �
Re�WG,G�

�GRPA��k��

Im�WG,G�
�GRPA��k��

,

=
− �2

�mp�k�
�k + G� � D�k� � �k + G��

�k + G� � �k + G��
. �57�

A careful examination shows that, because �mp�k� is given
by the determinant of the dynamical matrix D�k�, the quan-
tity �1�k� /�mp�k� is unchanged if all the components of the
dynamical matrix are multiplied by some constant. Equation
�57� is thus indeterminate. To avoid this problem, we replace
�mp�k� by �̃GRPA�k� in Eq. �57�. Our final result is thus

�G,G��k� =
− �2

�̃GRPA�k�
�k + G� � D�k� � �k + G��

�k + G� � �k + G��
.

�58�

Because Dx,y�k�=Dy,x�k�, we need to choose three pairs
of vectors �G ,G�� to get the components of the dynamical
matrix. To be valid, the dynamical matrix obtained in this
way must satisfy the equation

�̃GRPA�k� =
�2


�det�D�k�� . �59�

Equation �59� provides a check on the validity of our calcu-
lation.

V. NUMERICAL RESULTS FOR THE WIGNER CRYSTAL

In this section, we illustrate the application of our method
by computing the Lamé coefficients for the triangular Wigner

crystal in Landau levels N=0 and N=2. Figure 3 shows the
first two shells of reciprocal lattice vectors of the triangular
lattice with G1= �0,0�. We take the vectors G and G� in Eq.
�58� on these first two shells. Not all combinations of vectors
satisfy Eq. �59�. By experimentation, we found that with a
combination of the form ��G ,0� , �G� ,0� , �G ,G��� with
G ,G��0, this equation is satisfied in the irreducible Bril-
louin zone shown in Fig. 3 to better than 0.05% for k�
�0.3. We will thus stick to this type of combination for the
rest of this paper.

In the small-wave-vector limit, the dynamical matrix of
the Wigner crystal with a triangular lattice structure is given
by Eqs. �13a�–�13c�. Using Eq. �58�, we can extract the elas-
tic coefficients by fitting D�,	�k� along the path ky =0, where

Dx,x�k� = 	 e2

��3
�kx� +
2�

�
�c12 + 2c66�kx

2�2, �60a�

Dx,y�k� = 0, �60b�

Dy,y�k� =
2�

�
c66kx

2�2, �60c�

where c12 and c66 are expressed in units of e2 /��3.
Figure 4 illustrates one limitation of our method: the

GRPA dynamical matrix is very much dependent on the
choice of the couple �G ,G��. Different choices give the same
dynamical matrices D�,	�k� only in the small-wave-vector
limit k��0.1, as shown in Fig. 4 and, in this limit, the dy-
namical matrix element Dx,x�k� is almost entirely dominated
by the long-range Coulomb term �the first term in Eq. �60a��.
It follows that different choices of �G ,G�� lead to quite dif-
ferent values of the elastic coefficients c12 even though Eq.
�59� is satisfied. The coefficient c66 obtained from Dy,y�k�,
however, is not affected by the long-range Coulomb interac-
tion and appears to be independent of the choice of �G ,G��.
Note that the dynamical matrix given by Eq. �58� does not
have the correct transformation symmetries of the triangular
lattice. In cases where D�,	�k� is needed in all the Brillouin
zone, it becomes necessary to compute D�,	�k� in the irre-
ducible Brillouin zone and obtain D�,	�k� in the rest of the
Brillouin zone by symmetry.

(6)

(5)(4)

(7)

(2) (3)

(1) kx

ky

FIG. 3. First Brillouin zone of the triangular lattice with the
irreducible Brillouin zone shown as the dark area. The arrows rep-
resent the reciprocal lattice vectors on the second shell, while �1�
corresponds to the vector G=0.
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To give an idea of the variability of the numerical results
with �G ,G��, we show in Fig. 5 �for N=2� and Fig. 6 �for
N=0� the coefficients c12 and c66 extracted from the GRPA
dynamical matrix of the triangular Wigner crystal for differ-
ent couples of vectors �G ,G��. These coefficients are com-
pared with those computed using the HFA described in Sec.
III. We show the HFA results by a full line in Figs. 5 and 6.
For both N=0 and N=2, we find that the Hartree–Fock re-
sults for the coefficient c66 are extremely well reproduced by
the GRPA method and, as we said above, do not depend on
the choice of �G ,G��. This is what we expect since the
GRPA is the linear response of the crystal about the HFA
ground state, so that, taking into account the various approxi-
mations made in deriving the GRPA dynamical matrix, the
coefficients cij obtained from the two methods should be
roughly equal. In view of Eq. �60c�, the coefficient c66 is
easy to obtain since it is given by a one-parameter fit of the
Dy,y�kx ,ky =0� curve. The elastic coefficient c12 �which is re-
lated to the bulk modulus� is, on the other hand, much more
difficult to obtain from Eq. �60a�. Indeed, this elastic coeffi-
cient turns out to be very sensitive to how accurately the
long-wavelength limit �kx� of Dx,x�k� in Eq. �60a� is ob-
tained by the GRPA numerical calculation. �We note here
that the GRPA dynamical matrix does contain the long-range
Coulomb interaction discussed in Sec. II. The latter does not
have to be added by hand, as was the case for the elastic
coefficients computed in the HFA.� As we see in Figs. 5�b�
and 6�b��, c12 is also very sensitive to the choice of the vec-
tors �G ,G�� with one particular choice, �2,3�, reproducing
the HFA results almost exactly. The other two choices give
very different values for c12. In the absence of any criteria to
choose �G ,G�� a priori, we would say that the GRPA dy-
namical matrix cannot be used to make quantitative predic-
tions. The qualitative behavior of the GRPA elastic coeffi-
cient c12 is consistent with that of c12 computed in the HFA.

If we exclude the domain ��0.19 where our numerical
results become noisy, we find that the average of the GRPA
results for the three couples of �G ,G��, as shown in Figs.
5�b� and 6�b�, are in very good agreement with the HF cal-

culation. In the absence of any criteria to choose the best
couple �G ,G��, this averaging procedure must be used to get
qualitatively and quantitatively reliable results for the GRPA
dynamical matrix. For ��0.19, the crystal softens and the
quantum fluctuations in u are important. There is a
transition10 into a bubble state with two electrons per unit
cell at approximately �=0.22. We do not expect the assump-
tions underlying our method to be valid in this region.

VI. NUMERICAL RESULTS FOR THE STRIPE CRYSTAL

For the stripe crystal, the dynamical matrix is given by

Dx,x�k� = 	 e2

��3
 �

k�
kx

2�2 +
2�

�
�c11kx

2�2 + c66ky
2�2 + Kky

4�4� ,

�61a�

kxl (ky=0)

D
xx

(k
)/

(e
2
/κ

l3 )

0 0.1 0.2 0.3
0

0.01

0.02

0.03

0.04

(4,2)
(3,5)
(2,3)

FIG. 4. �Color online� Component Dxx�k� of the dynamical ma-
trix along kx computed for different couples of vectors �G ,G��. The
numbers in the legend refer to the numeration of the reciprocal
lattice vectors shown in Fig. 3.

ν

c 6
6/

(e
2 /κ

l3
)

0.12 0.14 0.16 0.18 0.20 0.22

0.0010

0.0015

0.0020

HFA
GRPA (2,3)
GRPA (2,4)
GRPA (3,5)

(a)

ν

c 1
2/

e2
/κ

l3
)

0.12 0.14 0.16 0.18 0.20 0.22-0.0060

-0.0040

-0.0020

0.0000

0.0020

0.0040

HFA
GRPA (2,3)
GRPA (2,4)
GRPA (3,5)
GRPA (average)

(b)

FIG. 5. �Color online� Elastic coefficients �a� c66 and �b� c12 of
the triangular Wigner crystal for Landau level N=2 computed using
the different approximations listed in the legend. For the GRPA, the
coefficients are computed using three different couples of reciprocal
lattice vectors. The numbers in the legend correspond to the nu-
meration of the vectors given in Fig. 3. The empty circles give an
average of the three GRPA results. For c66, the different symbols are
superimposed.
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Dx,y�k� = 	 e2

��3
 �

k�
kxky�

2 +
2�

�
�c12 + c66�kxky�

2,

�61b�

Dy,y�k� = 	 e2

��3
 �

k�
ky

2�2 +
2�

�
�c22ky

2�2 + c66kx
2�2� ,

�61c�

and the elastic coefficients evaluated in the HFA �Ref. 15� for
Landau level N=2 are listed in Table I.

The first four shells of reciprocal lattice vectors of the
stripe crystal are represented in Fig. 7. From Eq. �58�, the
vectors �G ,G�� must not be parallel; otherwise, the denomi-
nator in this equation vanishes. This forces us to use G in the
second shell and G� in the fourth shell of reciprocal lattice
vectors to evaluate the DM in the GRPA. We show in Figs.
8–10 the elements Dxx, Dxy, and Dyy computed at filling fac-
tor �=0.42 �in Landau level N=2� along different directions
in k space together with the corresponding DM in the HFA
element obtained from Eqs. �61a�–�61c� with the coefficients
of Table I. Similar results are obtained at other filling factors.
Notice that the bending coefficient K does not contribute to
any of these curves. For each curve, Eq. �59� is perfectly
satisfied and the coefficient c66, which can be extracted from
the GRPAfunction Dyy�kx ,ky =0�, is in excellent agreement
with the HFA results given in Table I.

For the GRPA, Figs. 8–10 show results for the couples
�G ,G�� that produce the maximum and minimum values of
the DM element. In all but the Dyy�kx=0,ky� case, the HFA
curve lies between these two results. For Dyy�kx=0,ky�, one
of the GRPA curves almost coincides with the HFA result for
ky��0.15. This is reassuring for the validity of the GRPA

TABLE I. Elastic coefficients n0
−1ci,j in units of e2 /�� for the

stripe crystal at various filling factors and in Landau level N=2.

� c11 ��10−2� c12 ��10−1� c22 ��10−2� c66 ��10−5�

0.42 7.13 −2.43 −0.73 4.35

0.43 5.91 −2.47 −1.15 6.31

0.44 4.95 −2.49 −1.64 7.08

0.45 4.21 −2.50 −2.15 7.10

0.46 3.75 −2.51 −2.65 6.21

ν

c 12
/(

e2
/κ

l3
)

0.08 0.1 0.12 0.14 0.16 0.18 0.2-0.0100

-0.0080
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-0.0040

-0.0020

GRPA (2,3)
GRPA (2,4)
GRPA (3,5)
HFA
GRPA (average)

(b)
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6
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(a)

FIG. 6. �Color online� Elastic coefficients �a� c66 and �b� c12 of
the triangular Wigner crystal in Landau level N=0 computed in the
different approximations indicated in the legend. For the GRPA, the
coefficients are computed using three different couples of reciprocal
lattice vectors. The numbers in the legend correspond to the nu-
meration of the vectors given in Fig. 3. The empty circles give the
average of the three GRPA results. For c66, the different symbols are
superimposed.
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ky
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FIG. 7. The first four shells of reciprocal lattice vectors of the
anisotropic stripe crystal.
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FIG. 8. �Color online� Component Dxx�k� of the GRPA and HFA
dynamical matrices of the stripe crystal computed along the direc-
tion ky =0 for partial filling factor �=0.42 in Landau level N=2,
computed using two different couples of reciprocal lattice vectors.
The numbers in the legend refer to numbering of the reciprocal
lattice vectors in Fig. 7.
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method, but it also makes it impossible for us to find what
part of the difference between the GRPA and HFA is numeri-
cal and what part is physical �i.e., due to anharmonicity, for
example�. We remark that, in the range k��0.15, the GRPA
results are not numerically very different from the small k�
expansion of the dynamical matrix given in Eqs. �61a�–�61c�
with the HFA coefficients. To the credit of our GRPA
method, we add that the evolution of the different Di,j with
filling factor is consistent with that of the corresponding el-
ements calculated in the HFA, as shown in Fig. 11.

We thus see that the evaluation of the elastic coefficients
other than c66 from the GRPA results seems hazardous for
the stripe crystal. The curvature of the functions Dxx, Dxy,
and Dyy in Figs. 8–10 is proportional to c11, c12+c66, and c22,
respectively. It is clear that the elastic coefficients extracted
from these Di,j are much bigger than those obtained from the

HFA �the curvature of the HFA function is barely visible in
the figures�. These coefficients also show very strong varia-
tion with the choice of �G ,G��. An averaging of the GRPA
results for different couples �G ,G�� would give a result
closer to the HFA but the improvement would not be as
dramatic as in the triangular lattice case. In fact, in the case
of Dyy, we find that averaging over different choices of re-
ciprocal lattice vectors does not bring any improvement to
the numerical results.

Finally, we remark that our GRPA results for Dxx�kx

=0,ky� are dominated by a strong ky
4 behavior, indicating that

the bending term K is absolutely essential in the elastic de-
scription of the stripe crystal in Eqs. �61a�–�61c�.

VII. CONCLUSION

In conclusion, in this paper, we have shown that it is
possible to derive an effective dynamical matrix for various
crystal states of the 2DEG in a strong magnetic field by
computing the density response function in the GRPA. We
have compared the dynamical matrix obtained in this way
with the one obtained from standard elasticity theory with
elastic coefficients computed in the HFA. Our comparison
was done for crystals with very different elastic properties,
namely, a triangular Wigner crystal and stripe crystal. Our
motivation for deriving a dynamical matrix using the GRPA
response consists in the fact that the latter has the advantage
of giving the dynamical matrix directly without having to
compute the elastic coefficients separately. Our comparison
with the Hartree–Fock results showed, however, that the
GRPA method must be used with care because of the vari-
ability of the results with the choice of the couples �G ,G��.
The shear modulus c66 computed in the GRPA agrees very
well with the one computed from the HFA, but the values of
the other elastic coefficients cij which are affected by the
long-range Coulomb interaction depend very much on the
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FIG. 9. �Color online� Component Dxy�k� of the GRPA and HFA
dynamical matrices of the stripe crystal computed along the direc-
tion ky =kx for partial filling factor �=0.42 in Landau level N=2,
computed using two different couples of reciprocal lattice vectors.
The numbers in the legend refer to numbering of the reciprocal
lattice vectors in Fig. 7.
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FIG. 10. �Color online� Component Dyy�k� of the GRPA and
HFA dynamical matrices of the stripe crystal computed along the
direction kx=0 for partial filling factor �=0.42 in Landau level N
=2, computed using two different couples of reciprocal lattice vec-
tors. The numbers in the legend refer to numbering of the reciprocal
lattice vectors in Fig. 7.
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FIG. 11. �Color online� Component Dxy�k� of the GRPA and
HFA dynamical matrices of the stripe crystal computed along the
direction kx=ky for different filling factors in Landau level N=2.
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choice of the couples �G ,G��. In some cases, as for a trian-
gular Wigner crystal, an averaging procedure over different
couples �G ,G�� improves the numerical accuracy of the
method. In the long-wavelength k��1 limit, however, the
GRPA dynamical matrix is a good approximation, both quali-
tatively and quantitatively, and gives reasonable estimates for
the elastic constants of the electronic solids that are in agree-
ment with the static Hartree–Fock calculations.
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